

Deutsche Akkreditierungsstelle GmbH

Anlage zur Akkreditierungsurkunde D-ML-13117-01-00 nach DIN EN ISO 15189:2014

Gültig ab: 21.01.2019

Ausstellungsdatum: 21.01.2019

Urkundeninhaber:

Praxis und Labor für Humangenetik Labor für Humangenetik Prof. Hehr Luitpoldstraße 4, 93047 Regensburg

Untersuchungen im Bereich:

Medizinische Laboratoriumsdiagnostik

Untersuchungsgebiete:

Humangenetik (Zytogenetik) Humangenetik (Molekulare Humangenetik)

Innerhalb der mit ** gekennzeichneten Untersuchungsbereiche ist dem Laboratorium, ohne dass es einer vorherigen Information und Zustimmung der Deutschen Akkreditierungsstelle GmbH bedarf, die Modifizierung sowie Weiter- und Neuentwicklung von Untersuchungsverfahren gestattet.

Die aufgeführten Untersuchungsverfahren sind beispielhaft. Das Laboratorium verfügt über eine aktuelle Liste aller Untersuchungsverfahren im flexiblen Akkreditierungsbereich.

Die Urkunde samt Urkundenanlage gibt den Stand zum Zeitpunkt des Ausstellungsdatums wieder. Der jeweils aktuelle Stand des Geltungsbereiches der Akkreditierung ist der Datenbank akkreditierter Stellen der Deutschen Akkreditierungsstelle GmbH (DAkkS) zu entnehmen. https://www.dakks.de/content/datenbank-akkreditierter-stellen

Untersuchungsgebiet: Humangenetik (Zytogenetik)

Untersuchungsart:

Chromosomenanalyse**

Analyt (Meßgröße)	Untersuchungsmaterial (Matrix)	Untersuchungstechnik
angeborener Chromosomensatz	Blut, Fruchtwasserzellen,	Chromosomenbänderungsanalyse
	Chorionzotten, Plazentagewebe,	
	Abortgewebe, Fibroblasten	
angeborener Chromosomensatz	Blut, Fruchtwasserzellen,	FISH
	Chorionzotten, Plazentagewebe,	
	Abortgewebe, Fibroblasten,	
	Mundschleimhautzellen	

Untersuchungsgebiet: Humangenetik (Molekulare Genetik)

Untersuchungsart:

Molekularbiologische Untersuchungen (Amplifikationsverfahren)**

Analyt (Meßgröße)	Untersuchungsmaterial (Matrix)	Untersuchungstechnik
22q11.2-Mikrodeletionssyndrom	genomische DNA, EDTA-Blut	Multiplex Ligation-mediated Probe
(22q11.2)		Amplification (MLPA)
Kopienzahlveränderungen (CNV)	genomische DNA, EDTA-Blut	Multiplex Ligation-mediated Probe
(Regionen laut MLPA-Kit)		Amplification (MLPA)
Achondrogenesis 1a	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR)
(TRIP11)		DNA Sequenzierung
		(Kapillargelelektrophoretische
		Auftrennung)
Achondroplasie	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR)
(FGFR3)	22.	DNA Sequenzierung
		(Kapillargelelektrophoretische
	-	Auftrennung)
Acrofaziale Dysostose	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR)
(SF3B4, DHODH)		DNA Sequenzierung
		(Kapillargelelektrophoretische
, ,		Auftrennung)
Adrenogenitales Syndrom	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR)
(CYP21, CYP11, HSD3B2)		DNA Sequenzierung
		(Kapillargelelektrophoretische
		Auftrennung)
		Multiplex Ligation-mediated Probe
		Amplification (MLPA)

Ausstellungsdatum: 21.01.2019

Gültig ab: 21.01.2019 Seite 2 von 18

Analyt (Meßgröße)	Untersuchungsmaterial (Matrix)	Untersuchungstechnik
Andermann-Syndrom	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR)
(KCC3)	Ť	DNA Sequenzierung
		(Kapillargelelektrophoretische
		Auftrennung)
		Mikro-/ Mini-Satellitenanalyse
		(Fragmentanalyse)
Androgeninsensitivität	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR)
(AR)		DNA Sequenzierung
		(Kapillargelelektrophoretische
		Auftrennung)
		Multiplex Ligation-mediated Probe
		Amplification (MLPA)
Anophthalmie/ Mikrophthalmie	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR)
(OTX2, SOX2)		DNA Sequenzierung
		(Kapillargelelektrophoretische
		Auftrennung)
		Multiplex Ligation-mediated Probe
		Amplification (MLPA)
Antley-Bixler-Syndrom	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR)
(POR, FGFR2)		DNA Sequenzierung
		(Kapillargelelektrophoretische
		Auftrennung)
ARXopathien	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR)
(ARX)		DNA Sequenzierung
		(Kapillargelelektrophoretische
		Auftrennung)
		Multiplex Ligation-mediated Probe
		Amplification (MLPA)
AZF-Deletion	genomische DNA, EDTA-Blut	größenspezifische DNA-
		Fragmentanalyse in F-PCR (Stufe 1)
		bzw. mit Agarosegel (Stufe 2)
Basalzellnävus-Syndrom	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR)
(PTCH1, PTCH2, SUFU)		DNA Sequenzierung
		(Kapillargelelektrophoretische
		Auftrennung)
		Multiplex Ligation-mediated Probe
		Amplification (MLPA)
Bainbridge-Ropers-Syndrom	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR)
(ASXL3)		DNA Sequenzierung
		(Kapillargelelektrophoretische
		Auftrennung)
Branchio-oto-renale Dysplasie	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR)
(EYA1, SIX5, SIX1)		DNA Sequenzierung
		(Kapillargelelektrophoretische
		Auftrennung)
		Multiplex Ligation-mediated Probe
		Amplification (MLPA)

Ausstellungsdatum: 21.01.2019

Analyt (Meßgröße)	Untersuchungsmaterial (Matrix)	Untersuchungstechnik
Branchio-Okulo-Faziales Syndrom (TFAP2A)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung)
CADASIL-Syndrom (NOTCH3)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung) Multiplex Ligation-mediated Probe Amplification (MLPA)
Familiäre Candidose, Typ 2 (CARD9)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung)
congenitale Muskeldystrophien (POMT1, POMT2, POMGnT1, POMK, Fukutin, FKRP, LARGE, ISPD, DAG1, COL4A1, GTDC2, TMEM5, B3GNT1)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung) Multiplex Ligation-mediated Probe Amplification (MLPA)
		Mikro-/ Mini-Satellitenanalyse (Fragmentanalyse) größenspezifische DNA- Fragmentanalyse in Gelmatrix
familiäre intrahepatische Cholestase bei niedriger Gamma-GT (ATP8B1, ABCB11, ABCB4)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung) Mikro-/ Mini-Satellitenanalyse (Fragmentanalyse) Multiplex Ligation-mediated Probe Amplification (MLPA)
Double cortex (DCX, LIS1, TUBA1A)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung) Multiplex Ligation-mediated Probe Amplification (MLPA)
Dubin-Johnson-Syndrom (ABCC2)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung)

Ausstellungsdatum: 21.01.2019

Gültig ab: 21.01.2019 Seite 4 von 18

Analyt (Meßgröße)	Untersuchungsmaterial (Matrix)	Untersuchungstechnik
Hypohidrotische ektodermale Dysplasien (EDA, EDAR, WNT10A, EDARADD) Enzephalopathie, akute, infektionsinduzierte	genomische DNA, EDTA-Blut genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung) Multiplex Ligation-mediated Probe Amplification (MLPA) Polymerasekettenreaktion (PCR) DNA Sequenzierung
nekrotisierende (RANBP2)		(Kapillargelelektrophoretische Auftrennung)
Ellis-van Creveld Syndrom (EVC, EVC2)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung) Multiplex Ligation-mediated Probe Amplification (MLPA) Mikro-/ Mini-Satellitenanalyse (Fragmentanalyse)
FAT4 -assoziierte Erkrankungen (FAT4)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung)
FGFR-assoziierte Kraniosynostosen (FGFR1, FGFR2, FGFR3)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung)
FLNA-assoziierte Skelettdysplasien (FLNA)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung)
FLNB-assoziierte Skelettdysplasien (FLNB)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung)
FOXG1-assoziierte Enzephalopathie (FOXG1)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung) Multiplex Ligation-mediated Probe Amplification (MLPA)

Ausstellungsdatum: 21.01.2019

Gültig ab: 21.01.2019 Seite 5 von 18

Analyt (Meßgröße)	Untersuchungsmaterial (Matrix)	Untersuchungstechnik
Frontotemporale Demenz mit	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR)
Parkinsonismus (MAPT)		DNA Sequenzierung
		(Kapillargelelektrophoretische
}		Auftrennung)
	1	Multiplex Ligation-mediated Probe
		Amplification (MLPA)
Gliedergürtelmuskeldystrophien	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR)
(POMGnT1, POMT2, POMT1,		DNA Sequenzierung
Fukutin, FKRP, ISPD, POMK)		(Kapillargelelektrophoretische
		Auftrennung)
		Multiplex Ligation-mediated Probe
		Amplification (MLPA)
		Mikro-/ Mini-Satellitenanalyse
		(Fragmentanalyse)
GLI3-assoziierte Erkrankungen	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR)
(GLI3)		DNA Sequenzierung
[(Kapillargelelektrophoretische
		Auftrennung)
		Multiplex Ligation-mediated Probe
		Amplification (MLPA)
Glucose-6-Phosphat-	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR)
Dehydrogenase-Mangel		DNA Sequenzierung
(G6PD)		(Kapillargelelektrophoretische
		Auftrennung)
Heterotaxie assoziiert mit	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR)
Hirnfehlbildungen		DNA Sequenzierung
(ZIC3, NODAL)		(Kapillargelelektrophoretische
		Auftrennung)
		Multiplex Ligation-mediated Probe
		Amplification (MLPA)
Holoprosenze phalie-Spektrum	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR)
(SHH, SIX3, ZIC2, TGIF, GLI2, PTCH1,		DNA Sequenzierung
HESX1, EMX2, NODAL)		(Kapillargelelektrophoretische
		Auftrennung)
		Multiplex Ligation-mediated Probe
		Amplification (MLPA)
Hydranenzephalie bzw.	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR)
Hydranenzephalie-Hydrozephalie-		DNA Sequenzierung
Syndrom (Fowler-Syndrom)		(Kapillargelelektrophoretische
(FLVCR2)		Auftrennung)
Hypochondroplasie	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR)
(FGFR3)		DNA Sequenzierung
		(Kapillargelelektrophoretische
		Auftrennung)
		<u>-</u> .

Ausstellungsdatum: 21.01.2019

Analyt (Meßgröße)	Untersuchungsmaterial (Matrix)	Untersuchungstechnik
Hypopituitarismus (PROP1, GLI2, HESX1, OTX2, LHX3, GH1)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung) Multiplex Ligation-mediated Probe Amplification (MLPA)
Immundysregulation, Polyendokrinopathie und Enteropathie, X-chromosomal (FOXP3)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung)
Kallmann-Syndrom (KAL1, FGFR1, PROK2, PROKR2, FGF8)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung) Multiplex Ligation-mediated Probe Amplification (MLPA)
Kalzifizierung, intrazerebrale (TREX1, OCLN)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung) Multiplex Ligation-mediated Probe Amplification (MLPA)
<i>KIF7</i> - assoziierte Erkrankungen (KIF7)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung)
Kraniofrontonasale Dysplasie (EFNB1)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung) Multiplex Ligation-mediated Probe Amplification (MLPA)
LAL-Defizienz (Mangel an lysosomaler saurer Lipase) (LIPA)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung)
LADD (FGFR2, FGFR3, FGF10)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung) Multiplex Ligation-mediated Probe Amplification (MLPA)
erbliche diffuse Leukenzephalopathie mit Spheroiden (HDLS) (CSF1R)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung)

Ausstellungsdatum: 21.01.2019

Analyt (Meßgröße)	Untersuchungsmaterial (Matrix)	Untersuchungstechnik
Leukenzephalopathie mit VWM (EIF2B5)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung)
Lissenzephalie Typ 1 (LIS1, DCX, TUBA1A, TUBG1, CASK, NDE1)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung) Multiplex Ligation-mediated Probe Amplification (MLPA)
LH/CG-Rezeptor-assoziierte Hormonstörungen (LHCGR)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung)
Mentale Retardierung X-chromosomal mit Kleinhirnhypoplasie (OPHN1)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung) Multiplex Ligation-mediated Probe Amplification (MLPA)
Metachromatische Leukodystrophie (ARSA)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung)
Mikrotie (HOXA2)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung)
Primäre Mikrozephalie, autosomal- rezessiv (ASPM, WDR62, MCPH1-7, PNKP, CDK6)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung) Multiplex Ligation-mediated Probe Amplification (MLPA) Mikro-/ Mini-Satellitenanalyse (Fragmentanalyse)
Morbus Wilson (ATP7B)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung) Multiplex Ligation-mediated Probe Amplification (MLPA)

Ausstellungsdatum: 21.01.2019

Analyt (Meßgröße)	Untersuchungsmaterial (Matrix)	Untersuchungstechnik
Mukoviszidose (CFTR)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung) Multiplex Ligation-mediated Probe Amplification (MLPA)
Mukoviszidose (CFTR)	genomische DNA, EDTA-Blut	allelspezifische Polymerasekettenreaktion (PCR) (Fragmentanalyse)
CBAVD (CFTR)	genomische DNA, EDTA-Blut	allelspezifische Polymerasekettenreaktion (PCR) (Fragmentanalyse)
Hypergonadotrope vorzeitige Ovarialinsuffizienz, vorzeitige und spontane ovarielle Überstimulation in der Schwangerschaft (FSHR)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung)
P63-assoziierte Erkrankungen (p63)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung)
Periventrikuläre noduläre Heterotopien (FLNA, ARFGEF2, SHOC2)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung) Multiplex Ligation-mediated Probe Amplification (MLPA) Mikro-/ Mini-Satellitenanalyse (Fragmentanalyse)
Polymikrogyrie (GPR56, TUBB2B, SRPX2, TUBA8, TUBB(5))	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung) Mikro-/ Mini-Satellitenanalyse (Fragmentanalyse)
Porenzephalie oder Megalencephale Leukoencephalopathie mit subkorticalen Zysten (HEPACAM, MLC1, COL4A1)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung)
Saethre-Chotzen-Syndrom (TWIST, FGFR3)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung) Multiplex Ligation-mediated Probe Amplification (MLPA)

Ausstellungsdatum: 21.01.2019

Gültig ab: 21.01.2019 Seite 9 von 18

Analyt (Meßgröße)	Untersuchungsmaterial (Matrix)	Untersuchungstechnik
Schilddrüsenhormonresistenz (THRB)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung)
Schizenzephalie (SHH, SIX3, EMX2, WDR62, COL4A1)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung) Multiplex Ligation-mediated Probe Amplification (MLPA)
Simpson-Golabi-Behmel-Syndrom (GPC3, GPC4)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung) Multiplex Ligation-mediated Probe Amplification (MLPA)
SLC26A2-assoziierte Skelettdysplasien (SLC26A2)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung)
autosomal-dominant vererbte Spastische Paraplegie (SPG4, SPG3A, SPG31)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung) Multiplex Ligation-mediated Probe Amplification (MLPA)
Spastische Paraplegie, autosomal- rezessiv (SPG7, SPG20, CYP7B1, SPG11, SPG15, SPG14, SPG21, SPG26)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung) Multiplex Ligation-mediated Probe Amplification (MLPA) Mikro-/ Mini-Satellitenanalyse (Fragmentanalyse)
Surfactant-Dysfunktion, pulmonale (ABCA3, STFPB, SFTPC, CSF2RA)	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung)
TCTN3 -assoziiertes Oro-fazio- digitales Syndrom IV	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR) DNA Sequenzierung (Kapillargelelektrophoretische Auftrennung)

Ausstellungsdatum: 21.01.2019

Gültig ab: 21.01.2019 Seite 10 von 18

Analyt (Meßgröße)	Untersuchungsmaterial (Matrix)	Untersuchungstechnik
Thanatophore Dysplasie	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR)
(FGFR3)		DNA Sequenzierung
		(Kapillargelelektrophoretische
		Auftrennung)
Treacher-Collins-Franceschetti-	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR)
Syndrom		DNA Sequenzierung
(TCOF1, POLR1C, POLR1D, EFTUD2)		(Kapillargelelektrophoretische
		Auftrennung)
		Multiplex Ligation-mediated Probe
-		Amplification (MLPA)
Trimethylaminurie	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR)
(FMO3)		DNA Sequenzierung
		(Kapillargelelektrophoretische
		Auftrennung)
TUBB3- assoziierte komplexe	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR)
Hirnentwicklungsstörung		DNA Sequenzierung
(TUBB3)		(Kapillargelelektrophoretische
		Auftrennung)
Van der Woude-Syndrom = VWS/	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR)
Popliteale Pterygium-Syndrom =		DNA Sequenzierung
PPS		(Kapillargelelektrophoretische
(IRF6, GRHL3)		Auftrennung)
		Multiplex Ligation-mediated Probe
		Amplification (MLPA)
X-chromosomaler Hydrozephalus	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR)
(L1CAM)		DNA Sequenzierung
		(Kapillargelelektrophoretische
		Auftrennung)
		Multiplex Ligation-mediated Probe
Zerebrale kavernöse	gonomischo DNA EDTA Blut	Amplification (MLPA)
Malformationen	genomische DNA, EDTA-Blut	Polymerasekettenreaktion (PCR)
(CCM1, CCM2, CCM3)		DNA Sequenzierung
(CCIVIT, CCIVIZ, CCIVIS)		(Kapillargelelektrophoretische
		Auftrennung) Multiplex Ligation-mediated Probe
		Amplification (MLPA)
Holoprosenzephalie (CDON,	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
DISP1, FGF8, FGFR1, GLI2, SHH,		Zielsequenzen (Library) mittels
SIX3, SUFU, TGIF1, ZIC2)		Nextera EnrichmentTM
		(IlluminaTM) ,
		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)

Ausstellungsdatum: 21.01.2019

Gültig ab: 21.01.2019 Seite 11 von 18

Analyt (Meßgröße)	Untersuchungsmaterial (Matrix)	Untersuchungstechnik
Lissenzephalie (DCX,	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
PAFAH1B1, ARX, TUBA1A, TUBB2B,		Zielsequenzen (Library) mittels
TUBG1, DYNC1H1)		Nextera EnrichmentTM
		(IlluminaTM) ,
		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)
Lissenzephalie mit	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
Kleinhirnhypoplasie		Zielsequenzen (Library) mittels
(CASK, RELN, TUBA1A, TUBB2B,		Nextera EnrichmentTM
VLDLR)		(IlluminaTM) ,
		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)
Double Cortex (DCHS1,	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
DCX, ISPD, PAFAH1B1, POMGNT2,		Zielsequenzen (Library) mittels
TUBA1A, TUBB, TUBB2B, TUBG1)		Nextera EnrichmentTM
		(IlluminaTM) ,
		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)
Periventrikuläre noduläre	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
Heterotopien		Zielsequenzen (Library) mittels
(ARFGEF2, ERMARD, FLNA, NEDD4L,		Nextera EnrichmentTM
TUBA1A)		(IlluminaTM) ,
		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)
Polymikrogyrie	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
(DYNC1H1, GPR56, POMGnT1,		Zielsequenzen (Library) mittels
RAB18, RAB3GAP1, RAB3GAP2,		Nextera EnrichmentTM
TUBA1A, TUBB, TUBB2B, TUBB3,		(IlluminaTM) ,
WDR62)	*	Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)
Primäre Mikrozephalie autosomal	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
rezessiv		Zielsequenzen (Library) mittels
(ASPM, CENPJ, MCPH1, STIL,		Nextera EnrichmentTM
WDR62)		(IlluminaTM) ,
		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)

Ausstellungsdatum: 21.01.2019

Gültig ab: 21.01.2019 Seite 12 von 18

Analyt (Meßgröße)	Untersuchungsmaterial (Matrix)	Untersuchungstechnik
Mikrozephalie	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
(ASPM, MCPH1, NBN, TUBA1A,		Zielsequenzen (Library) mittels
TUBB2B, WDR62)		Nextera EnrichmentTM
		(IlluminaTM),
-		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)
kortikale Mikrationsstörungen	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
(DYNC1H1, GRIN2B, PAFAH1B1,		Zielsequenzen (Library) mittels
POMGnt1, TUBA1A, TUBB2B)		Nextera EnrichmentTM
		(IlluminaTM) ,
		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)
Walker-Warburg-Syndrom	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
(B3GNT1, COL4A1, DAG1, FKRP,		Zielsequenzen (Library) mittels
FKTN, ISPD, LARGE, POMGNT2,		Nextera EnrichmentTM
POMGnT1, POMK, POMT1, POMT2,		(IlluminaTM) ,
TMEM5)		Massive parallele Sequenzierung
	2	mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)
Aicardie-Goutieres-Syndrom (ADAR,	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
IFIH1, RNASEH2A, RNASEH2B,		Zielsequenzen (Library) mittels
RNASEH2C, SAMHD1, TREX1)		Nextera EnrichmentTM
		(IlluminaTM) ,
		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)
Pflasterstein-Lissenzephalie (FKRP,	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
FKTN, GPR56, ISPD, LARGE,		Zielsequenzen (Library) mittels
POMGnT1, POMT1, POMT2,		Nextera EnrichmentTM
TMEM5)		(IlluminaTM) ,
		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)
Hydrozephalus X-chromosomal	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
(AP1S2, L1CAM, MTM1, OFD1, ZIC3)		Zielsequenzen (Library) mittels
		Nextera EnrichmentTM
		(IlluminaTM) ,
		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)

Ausstellungsdatum: 21.01.2019

Gültig ab: 21.01.2019 Seite 13 von 18

Analyt (Meßgröße)	Untersuchungsmaterial (Matrix)	Untersuchungstechnik
Hydrozephalus	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
(AP1S2, COL4A1, FKRP, FKTN,		Zielsequenzen (Library) mittels
GRIN2B, ISPD, L1CAM, POMGnT1,		Nextera EnrichmentTM
POMT1, POMT2)		(IlluminaTM) ,
		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)
Pontozerebelläre Hypoplasie	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
(B3GALNT1, CASK, DCX, EXOSC3,		Zielsequenzen (Library) mittels
RARS2, RELN, SEPSECS, TSEN2,		Nextera EnrichmentTM
TSEN34, TSEN54, VRK1)		(IlluminaTM) ,
		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)
Agenesie/Hypoplasie Corpus	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
callosum (CREBBP, DCC, POMGnT1,		Zielsequenzen (Library) mittels
POMT1, POMT2, SHH, SIX3,		Nextera EnrichmentTM
TUBA1A, TUBB2B)		(IlluminaTM) ,
		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)
Tubulinopathien (GRIN2B, TUBA1A,	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
TUBB, TUBB2B, TUBB3, TUBG1)		Zielsequenzen (Library) mittels
		Nextera EnrichmentTM
		(IlluminaTM) ,
		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)
Hereditäre spastische Paraplegie	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
sporadisch		Zielsequenzen (Library) mittels
(ATL1, CYP7B1, KIF5A, REEP1,		Nextera EnrichmentTM
SPAST, SPG11, SPG7, ZFYVE26)		(IlluminaTM) ,
		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)
Hereditäre spastische Paraplegie	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
autosomal-dominant		Zielsequenzen (Library) mittels
(ATL1, BSCL2, HSPD1, KIAA0196,		Nextera EnrichmentTM
NIPA1, REEP1, SLC33A1, SPAST,		(IlluminaTM) ,
ZFYVE27)		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)

Ausstellungsdatum: 21.01.2019

Gültig ab: 21.01.2019 Seite 14 von 18

autosomal-rezessiv (CYP7B1, SPG11, SPG7, ZFYVE26) Nextera EnrichmentTM (IlluminaTM), Massive parallele Sequenzierung mittels Sequencing-by-Synthesis (NextSeq500TM/IlluminaTM)	Hereditäre spastische Paraplegie	Untersuchungsmaterial (Matrix)	
(CYP7B1, SPG11, SPG7, ZFYVE26) (IlluminaTM), Massive parallele Sequenzierung mittels Sequencing-by-Synthesis (NextSeq500TM/IlluminaTM) Hereditäre spastische Paraplegie X-linked (L1CAM, PLP1, SLC16A2) (IlluminaTM), Massive parallele Sequenzierung vo Zielsequenzen (Library) mittels Nextera EnrichmentTM (IlluminaTM), Massive parallele Sequenzierung mittels Sequencing-by-Synthesis (NextSeq500TM/IlluminaTM) Leukenzephalopathie (EIF2B1, EIF2B3, EIF2B4, genomische DNA, EDTA-Blut Amplifikation zur Anreicherung vo Zielsequenzen (Library) mittels		genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
(IlluminaTM), Massive parallele Sequenzierung mittels Sequencing-by-Synthesis (NextSeq500TM/IlluminaTM) Hereditäre spastische Paraplegie X- linked (L1CAM, PLP1, SLC16A2) genomische DNA, EDTA-Blut Amplifikation zur Anreicherung vo Zielsequenzen (Library) mittels Nextera EnrichmentTM (IlluminaTM), Massive parallele Sequenzierung mittels Sequencing-by-Synthesis (NextSeq500TM/IlluminaTM) Leukenzephalopathie (EIF2B1, EIF2B2, EIF2B3, EIF2B4,	autosomal-rezessiv		Zielsequenzen (Library) mittels
Massive parallele Sequenzierung mittels Sequencing-by-Synthesis (NextSeq500TM/IlluminaTM) Hereditäre spastische Paraplegie X-linked (L1CAM, PLP1, SLC16A2) Genomische DNA, EDTA-Blut Amplifikation zur Anreicherung vo Zielsequenzen (Library) mittels Nextera EnrichmentTM (IlluminaTM), Massive parallele Sequenzierung mittels Sequencing-by-Synthesis (NextSeq500TM/IlluminaTM) Leukenzephalopathie Genomische DNA, EDTA-Blut Amplifikation zur Anreicherung vo Zielsequenzen (Library) mittels	(CYP7B1, SPG11, SPG7, ZFYVE26)		Nextera EnrichmentTM
Massive parallele Sequenzierung mittels Sequencing-by-Synthesis (NextSeq500TM/IlluminaTM) Hereditäre spastische Paraplegie X-linked (L1CAM, PLP1, SLC16A2) Genomische DNA, EDTA-Blut Amplifikation zur Anreicherung vo Zielsequenzen (Library) mittels Nextera EnrichmentTM (IlluminaTM), Massive parallele Sequenzierung mittels Sequencing-by-Synthesis (NextSeq500TM/IlluminaTM) Leukenzephalopathie Genomische DNA, EDTA-Blut Amplifikation zur Anreicherung vo Zielsequenzen (Library) mittels			(IlluminaTM),
mittels Sequencing-by-Synthesis (NextSeq500TM/IlluminaTM) Hereditäre spastische Paraplegie X- linked (L1CAM, PLP1, SLC16A2) Repromische DNA, EDTA-Blut Maplifikation zur Anreicherung vo Zielsequenzen (Library) mittels Nextera EnrichmentTM (IlluminaTM), Massive parallele Sequenzierung mittels Sequencing-by-Synthesis (NextSeq500TM/IlluminaTM) Leukenzephalopathie (EIF2B1, EIF2B3, EIF2B4, genomische DNA, EDTA-Blut Amplifikation zur Anreicherung vo Zielsequenzen (Library) mittels			
Hereditäre spastische Paraplegie X- linked (L1CAM, PLP1, SLC16A2) Renomische DNA, EDTA-Blut (IlluminaTM) Massive parallele Sequenzierung mittels Sequencing-by-Synthesis (NextSeq500TM/IlluminaTM) Leukenzephalopathie (EIF2B1, EIF2B3, EIF2B4, genomische DNA, EDTA-Blut (NextSeq500TM/IlluminaTM) amplifikation zur Anreicherung vo Zielsequenzen (Library) mittels			
Hereditäre spastische Paraplegie X- linked (L1CAM, PLP1, SLC16A2) genomische DNA, EDTA-Blut Amplifikation zur Anreicherung vo Zielsequenzen (Library) mittels Nextera EnrichmentTM (IlluminaTM), Massive parallele Sequenzierung mittels Sequencing-by-Synthesis (NextSeq500TM/IlluminaTM) Leukenzephalopathie (EIF2B1, EIF2B3, EIF2B4, genomische DNA, EDTA-Blut Amplifikation zur Anreicherung vo Zielsequenzen (Library) mittels			(NextSeq500TM/IlluminaTM)
PLP1, SLC16A2) Nextera EnrichmentTM (IlluminaTM), Massive parallele Sequenzierung mittels Sequencing-by-Synthesis (NextSeq500TM/IlluminaTM) Leukenzephalopathie (EIF2B1, EIF2B3, EIF2B4, genomische DNA, EDTA-Blut Amplifikation zur Anreicherung vo Zielsequenzen (Library) mittels	Hereditäre spastische Paraplegie X-	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
PLP1, SLC16A2) Nextera EnrichmentTM (IlluminaTM), Massive parallele Sequenzierung mittels Sequencing-by-Synthesis (NextSeq500TM/IlluminaTM) Leukenzephalopathie (EIF2B1, EIF2B2, EIF2B3, EIF2B4, Rextera EnrichmentTM (IlluminaTM), Massive parallele Sequenzierung mittels Sequencing-by-Synthesis (NextSeq500TM/IlluminaTM) Zielsequenzen (Library) mittels	inked (L1CAM,		Zielsequenzen (Library) mittels
Massive parallele Sequenzierung mittels Sequencing-by-Synthesis (NextSeq500TM/IlluminaTM) Leukenzephalopathie genomische DNA, EDTA-Blut Amplifikation zur Anreicherung vo Zielsequenzen (Library) mittels	PLP1, SLC16A2)		A S
Massive parallele Sequenzierung mittels Sequencing-by-Synthesis (NextSeq500TM/IlluminaTM) Leukenzephalopathie genomische DNA, EDTA-Blut Amplifikation zur Anreicherung vo Zielsequenzen (Library) mittels			(IlluminaTM),
mittels Sequencing-by-Synthesis (NextSeq500TM/IlluminaTM) Leukenzephalopathie genomische DNA, EDTA-Blut Amplifikation zur Anreicherung vo Zielsequenzen (Library) mittels			***
Leukenzephalopathie genomische DNA, EDTA-Blut Amplifikation zur Anreicherung vo (EIF2B1, EIF2B2, EIF2B3, EIF2B4, Zielsequenzen (Library) mittels			
Leukenzephalopathie genomische DNA, EDTA-Blut Amplifikation zur Anreicherung vo Zielsequenzen (Library) mittels			
(EIF2B1, EIF2B2, EIF2B3, EIF2B4, Zielsequenzen (Library) mittels	_eukenzephalopathie	genomische DNA, EDTA-Blut	
Approximation of the contract	EIF2B1, EIF2B2, EIF2B3, EIF2B4,		The state of the s
	EIF2B5)		
(IlluminaTM),			A 142
Massive parallele Sequenzierung			
mittels Sequencing-by-Synthesis			
(NextSeq500TM/IlluminaTM)			
CADASIL-Syndrom genomische DNA, EDTA-Blut Amplifikation zur Anreicherung vo	CADASIL-Syndrom	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
(NOTCH3) Zielsequenzen (Library) mittels	NOTCH3)		_
Nextera EnrichmentTM			Nextera EnrichmentTM
(IlluminaTM),			(IlluminaTM) ,
Massive parallele Sequenzierung			Massive parallele Sequenzierung
mittels Sequencing-by-Synthesis			52 556
(NextSeq500TM/IlluminaTM)			(NextSeq500TM/IlluminaTM)
CARASIL-Syndrom genomische DNA, EDTA-Blut Amplifikation zur Anreicherung von	CARASIL-Syndrom	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
(HTRA1) Zielsequenzen (Library) mittels	HTRA1)		Zielsequenzen (Library) mittels
Nextera EnrichmentTM			Nextera EnrichmentTM
(IlluminaTM),			(IlluminaTM) ,
Massive parallele Sequenzierung			Massive parallele Sequenzierung
mittels Sequencing-by-Synthesis			mittels Sequencing-by-Synthesis
(NextSeq500TM/IlluminaTM)			
	Cerebrale Kavernöse	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
Malformationen Zielsequenzen (Library) mittels	Malformationen	The state of the s	
(CCM2, KRIT1, PDCD10) Nextera EnrichmentTM	CCM2, KRIT1, PDCD10)		1.5
(IlluminaTM),			(IlluminaTM) ,
Massive parallele Sequenzierung			•
mittels Sequencing-by-Synthesis			
(NextSeq500TM/IlluminaTM)			(NextSeq500TM/IlluminaTM)

Ausstellungsdatum: 21.01.2019

Gültig ab: 21.01.2019 Seite 15 von 18

Analyt (Meßgröße)	Untersuchungsmaterial (Matrix)	Untersuchungstechnik
Parkinson klassisch	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
(LRRK2, PARK2, PARK7, PINK1,		Zielsequenzen (Library) mittels
SNCA, VPS35)		Nextera EnrichmentTM
		(IlluminaTM) ,
		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)
Parkinson early onset	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
(PARK2, PARK7, PINK1, SNCA)		Zielsequenzen (Library) mittels
		Nextera EnrichmentTM
		(IlluminaTM) ,
		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)
Spastische Ataxie	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
(SACS)		Zielsequenzen (Library) mittels
		Nextera EnrichmentTM
		(IlluminaTM) ,
		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)
Mukoviszidose	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
(CFTR)		Zielsequenzen (Library) mittels
		Nextera EnrichmentTM
		(IlluminaTM) ,
		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)
Infantile und neonatale Cholestase	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
(ABCB11, ABCB4, ATP8B1, CLDN1,		Zielsequenzen (Library) mittels
DCDC2, JAG1, SERPINA1, SLC25A13)		Nextera EnrichmentTM
		(IlluminaTM) ,
		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)
Progressive Familiäre	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
intrahepatische Cholestase		Zielsequenzen (Library) mittels
(Typ 1, 2, 3, 4 und 5),		Nextera EnrichmentTM
BRIC,		(IlluminaTM) ,
Schwangerschaftscholestase und	÷	Massive parallele Sequenzierung
Hypercholanämie		mittels Sequencing-by-Synthesis
(ABCB11, ABCB4, ATP7B, ATP8B1,		(NextSeq500TM/IlluminaTM)

Ausstellungsdatum: 21.01.2019

Analyt (Meßgröße)	Untersuchungsmaterial (Matrix)	Untersuchungstechnik
Kongenitale Gallensäure-Synthese	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
Defekte		Zielsequenzen (Library) mittels
(ABCD3, ACOX2, AKR1D1, AMACR,		Nextera EnrichmentTM
CYP7B1, HSD3B7, VIPAS39, VPS33B)		(IlluminaTM) ,
		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)
Steatosis Hepatis im Kindesalter	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
(ALDOA, ALDOB, ALMS1, ATP7B,		Zielsequenzen (Library) mittels
LIPA, SLC25A13)		Nextera EnrichmentTM
		(IlluminaTM) ,
		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)
Simpson-Golabi-Behmel-Syndrom	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
(GPC3, GPC4, OFD1)		Zielsequenzen (Library) mittels
		Nextera EnrichmentTM
		(IlluminaTM) ,
		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)
Skelettdysplasie fetal	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
(COL1A1, COL1A2, COL2A1, EVC,		Zielsequenzen (Library) mittels
EVC2, FGFR3)		Nextera EnrichmentTM
		(IlluminaTM) ,
		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)
Faziale Dysostosen/ Treacher-	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
Collins-Syndrom		Zielsequenzen (Library) mittels
(TCOF1, POLR1D, POLR1C, POLR1A,		Nextera EnrichmentTM
EFTUD2)		(IlluminaTM) ,
		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)
Polydaktylie postaxial	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
(DHCR7, EVC, EVC2, FGFR2, GLI3,		Zielsequenzen (Library) mittels
OFD1)		Nextera EnrichmentTM
-		(IlluminaTM) ,
		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)

Ausstellungsdatum: 21.01.2019

Gültig ab: 21.01.2019 Seite 17 von 18

Analyt (Meßgröße)	Untersuchungsmaterial (Matrix)	Untersuchungstechnik
Gorlin-Golz-Syndrom/Basalzellnävus	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
Syndrom (PTCH1, PTCH2, SUFU)		Zielsequenzen (Library) mittels
		Nextera EnrichmentTM
		(IlluminaTM) ,
		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)
Ektodermale-Dysplasie	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
(EDA, EDAR, EDARADD, TP63,		Zielsequenzen (Library) mittels
WNT10A)		Nextera EnrichmentTM
-		(IlluminaTM),
		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)
Septooptische Dysplasie	genomische DNA, EDTA-Blut	Amplifikation zur Anreicherung von
(CDON, DISP1, EMX2, FGF8, FGFR1,		Zielsequenzen (Library) mittels
GLI2, HESX1, SHH, SIX3, TGIF1, ZIC2)		Nextera EnrichmentTM
		(IlluminaTM) ,
		Massive parallele Sequenzierung
		mittels Sequencing-by-Synthesis
		(NextSeq500TM/IlluminaTM)
numerische	genomische DNA, EDTA-Blut	Pränataler PCR-Schnelltest:
Chromosomenstörungen		quantitative Fluoreszenz-PCR,
(Chromosomen 13, 18 und 21,		Kapillargelelektrophorese
Geschlechtschromosomen X und Y)		
STR-Markeranalyse	genomische DNA, EDTA-Blut	PCR, Fragmentlängenanalyse
Monogene Erkrankungen	Einzelzellen aus peripherem Blut	Polymerasekettenreaktion (PCR)
	(EDTA-Blut), Polkörper,	allelspezifische
	Trophektodermbiopsie	Polymerasekettenreaktion (PCR)
		DNA Sequenzierung
		(Kapillargelelektrophoretische
		Auftrennung)
		Mikro-/ Mini-Satellitenanalyse
		(Fragmentanalyse)

Ausstellungsdatum: 21.01.2019

Gültig ab: 21.01.2019 Seite 18 von 18